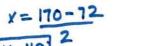
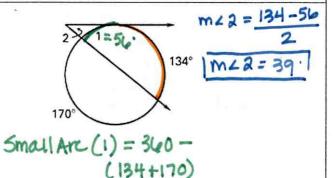
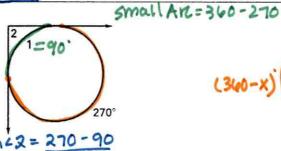

Apply other Angle Relationships in Circles


	Apply other	er Angle Relationships in Circles
Vocabulary	Definition	Example
THEOREM 10.11 Tangent and chord	If a tangent and a chord intersect at a point on a circle, then the measure of each angle formed is one half the measure of its intercepted arc.	a. $m \angle 1$ $m \angle 1 = \frac{1}{2}$ $m \angle 1 = \frac{1}{2}$ $m \angle 1 = \frac{1}{2}$ $m \angle 2 = \frac{1}{2}$ $m \angle 1 = \frac{1}{2}$ $m \angle 1 = \frac{1}{2}$ $m \angle 2 = \frac{1}{2}$ $m \angle 1 = \frac{1}{2}$ $m \angle 2 = 180 \cdot 60$ $m \angle 2 = 190 \cdot 60$ $m \angle 3 = 190 \cdot 60$ $m \angle 4 = 190 \cdot 60$ $m \angle 4 = 190 \cdot 60$ $m \angle 6 = 200$
THEOREM 10.12 ANGLES INSIDE the CIRCLE THEOREM 2 chords	If two chords intersect inside a circle, then the measure of each angle is one half the sum of the measures of the arcs intercepted by the angle and its vertical angle.	Find the value of x. $m \angle 1 = \frac{1}{2} (m + m)$ $m \angle 2 = \frac{1}{2} (m + m)$ $m \angle 1 + m \angle 2 = 180^{\circ} LP$ Find the value of x. $112^{\circ} \times = \frac{112 + 140}{2}$ $140^{\circ} \times = \frac{112 + 140}{2}$ $126 = \frac{112 + 144}{2}$


	GLES	EM 10.1 OUTSI CIRCLE OREM	
		2	
Т		NT and	a
AN	the C THE	OUTSI TRCLE OREM	

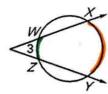
If a tangent and a secant, two tangents, or two secants intersect outside a circle, then the measure of the angle formed is one half the difference of the measures of the intercepted arcs.

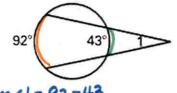


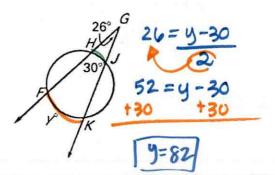


TWO TANGENTS

Small arc and exterior angle are


$$m\angle 2 = \frac{1}{2}(\widehat{mPQR} - \widehat{mPR})$$




45= (360-X) -X

TWO SECANTS

$$m \angle 3 = \frac{1}{2} (m\widehat{X}\widehat{Y} - m\widehat{W}\widehat{Z})$$

