

For use with pages 2-8

Use the diagram to decide whether the given statement is true or false.

- **1.** Points H, I, and G are collinear.
- Points H, I, and J are coplanar. \uparrow all on the shaded
- \overrightarrow{EG} and \overrightarrow{FG} are opposite rays.
- All points on \overrightarrow{GI} and \overrightarrow{GF} are coplanar. \top
- The intersection of \overrightarrow{EF} and plane JKH is \overrightarrow{HI} .
- The intersection of \overrightarrow{EF} , \overrightarrow{HI} , and \overrightarrow{JG} is point G. $\overrightarrow{\mathsf{T}}$
- The intersection of plane EGH and plane JGI is point G.
- The intersection of plane *EFI* and plane *JKG* is \overrightarrow{HG} .

Sketch the figure described.

- 9. Two rays that do not intersect
- 10. Three planes that intersect in one line

- 11. Three lines that intersect in three points
- 12. A ray that intersects a plane in one point

In Exercises 13-15, use the diagram.

13. Name 12 different rays

14. Name a pair of opposite rays.

Name 3 lines that intersect at point C.

LESSON 1.1

Practice continued For use with pages 2–8

16. Draw four noncollinear points A, B, C, and D. Then sketch \overrightarrow{AB} , \overrightarrow{BC} , and \overrightarrow{AD} .

17. Sketch plane M intersecting plane N. Then sketch plane O so that it intersects plane N, but not plane M.

You are given an equation of a line and a point. Use substitution to determine whether the point is on the line.

18.
$$y = 5x + 3$$
; $A(1, 8)$

21.
$$2x - y = 7$$
; $A(3, -1)$

19.
$$y = -x + 3$$
; $A(6, 3)$

22.
$$x + 6y = 40$$
; $A(-10, 5)$

20.
$$y = -3x - 6$$
; $A(2, 0)$

23.
$$-x - 4y = -14$$
; $A(-6, 2)$

Graph the inequality on a number line. Tell whether the graph is a segment, a ray or rays, a point, or a line.

24.
$$x \ge 2$$

25.
$$2 \le x \le 5$$

26.
$$x \le 0$$
 or $x \ge 8$

27.
$$|x| \leq 0$$