For use with pages 2-8 Use the diagram to decide whether the given statement is true or false. - **1.** Points H, I, and G are collinear. - Points H, I, and J are coplanar. \uparrow all on the shaded - \overrightarrow{EG} and \overrightarrow{FG} are opposite rays. - All points on \overrightarrow{GI} and \overrightarrow{GF} are coplanar. \top - The intersection of \overrightarrow{EF} and plane JKH is \overrightarrow{HI} . - The intersection of \overrightarrow{EF} , \overrightarrow{HI} , and \overrightarrow{JG} is point G. $\overrightarrow{\mathsf{T}}$ - The intersection of plane EGH and plane JGI is point G. - The intersection of plane *EFI* and plane *JKG* is \overrightarrow{HG} . Sketch the figure described. - 9. Two rays that do not intersect - 10. Three planes that intersect in one line - 11. Three lines that intersect in three points - 12. A ray that intersects a plane in one point In Exercises 13-15, use the diagram. 13. Name 12 different rays 14. Name a pair of opposite rays. Name 3 lines that intersect at point C. LESSON 1.1 ## **Practice** continued For use with pages 2–8 **16.** Draw four noncollinear points A, B, C, and D. Then sketch \overrightarrow{AB} , \overrightarrow{BC} , and \overrightarrow{AD} . 17. Sketch plane M intersecting plane N. Then sketch plane O so that it intersects plane N, but not plane M. You are given an equation of a line and a point. Use substitution to determine whether the point is on the line. **18.** $$y = 5x + 3$$; $A(1, 8)$ **21.** $$2x - y = 7$$; $A(3, -1)$ **19.** $$y = -x + 3$$; $A(6, 3)$ **22.** $$x + 6y = 40$$; $A(-10, 5)$ **20.** $$y = -3x - 6$$; $A(2, 0)$ **23.** $$-x - 4y = -14$$; $A(-6, 2)$ Graph the inequality on a number line. Tell whether the graph is a segment, a ray or rays, a point, or a line. **24.** $$x \ge 2$$ **25.** $$2 \le x \le 5$$ **26.** $$x \le 0$$ or $x \ge 8$ **27.** $$|x| \leq 0$$