LESSON 3.3

PracticeFor use with pages 161–169

orove that lines p and q are

Is there enough information to prove that lines p and q are parallel? If so, state the postulate or theorem you would use.

16

58+122=180V P/19 by CC1

85=85

Plla by CAI

can not assume that it is 120

ce 1 or css

CCA

by

Not enough info

120 - 82

Find the value of x that makes $m \parallel n$.

4.

1 + 1 = 180

2x+100=180

2x = 80

14

then min

5.

X+1=110

X=109

m//n cca

B+ 17=180

X-15+80=180

X+65=180

X=115

M/In by CC

7.

7 = 7

6x-4=4x

2X - 4 = 0

2X=4

miln by CAI

8.

图 = 13

72+13=5x+23

2x = 10

X=5

m//h CCA

1 + □ = 180

X+20 + X = 180

2x+20=180

2X = 160

m//n ou cci

Geometry

Chapter 3 Practice Workbook

LESSON 3.3

Practice continued For use with pages 161-169

In Exercises 10–12, choose the word that best completes the statement.

- 10. If two lines are cut by a transversal so the alternate interior angles are (congruent, supplementary, complementary), then the lines are parallel.
- 11. If two lines are cut by a transversal so the consecutive interior angles are (congruent, supplementary, complementary), then the lines are parallel.
- 12. If two lines are cut by a transversal so the corresponding angles are (congruent, supplementary, complementary), then the lines are parallel.
- 13. Gardens A garden has five rows of vegetables. Each row is parallel to the row immediately next to it. Explain why the first row is parallel to the last row.

Transitive of //

In Exercises 14-18, complete the two-column proof.

GIVEN: $g \parallel h$, $\angle 1 \cong \angle 2$

PROVE: p||r|, Reasons can only

to prove linew are parallel,

Statements			Reasons		
$g \parallel h$			14.	Given	
Z1≅ Z3	3		. 15.	?	
∠1 ≅ ∠2		٠,،	16.	Given	
∠2 ≅ ∠3			17.	Transitive	
$p \parallel r$			18.	CAE	

LESSON

Practice continued For use with pages 161–169

In Exercises 19-23, complete the two-column proof.

GIVEN:
$$n \parallel m$$
, $\angle 1 \cong \angle 2$

PROVE: p || r only be by CCA CAI

Statements	Reasons	-
$n \parallel m$	19. Given	
Z1≅ Z3	20. Al?	
∠1 ≅ ∠2	21. Given	
∠2 ≅ ∠3	22. Transit	ive
$p \parallel r$	23. CA	

24. Railroad Tracks Two sets of railroad tracks intersect as shown. How do you know that line *n* is parallel to line *m*?

